Guaranteeing memory
safety in Rust

Nicholas D. Matsakis
Mozilla Research

Hashtable in C / C++

template<class K, class V> - N
struct Hashtable {
Bucket<K, V> xbuckets;
unsigned num_buckets; . y
} l
template<class K, class V> 4 D
struct Bucket {
bool occupied;

K key; ~ /
V value:

Thursday, July 18, 13

Insertion

template<class K, class V>
void insert(
Hashtable<K, V> xtable,
K key,
V value)

if (table full) {
table->buckets = realloc(table->buckets, ...);:

}

unsigned index

tab
tab
tab

LE—>
LE—>

LE—>

DUC
DUC
QUC

Kets
Kets

Kets

[

Grow arrays as necessary

~

J

/

= find_bucket(table, &key);
. key = key;

index.
1ndex]|

index.

.value =
.0Cccupie

value:
d = true:

I Initialize the bucket

~

J

Thursday, July 18, 1

3

Assumptions

template<class K, class V>
void insert(
Hashtable<K, V> xtable,
K key,
V value)

if (table full) {
table->buckets = realloc(table->buckets, ...);:

}

unsigned index

tab
tab
tab

LE—>
LE—>

LE—>

DUC
DUC
QUC

Kets
Kets

Kets

-

Buckets array is unaliased

~

J

/

= find_bucket(table, &key);
. key = key;

index.
1ndex]|

index.

.value =

value:

.occupied = true;

/)
Never access bucket if

1 occupied is false

J

Thursday, July 18, 1

3

Living on the edge

Violating either of these assumptions
can lead to a crash

=>

Crashes lead to exploits.

Thursday, July 18, 13

Privacy!?

Q: Doesn’t privacy solve this!?

A: Not really.

Thursday, July 18, 13

Table lookup

template<class K, class V>

Vx find(.

Hashtable<K, V> xtable, .

K *xkey) Find the correct bucket.
1 L

unsigned index = find_bucket(table, &key);

if (!table->buckets[index].occupied)

return NULL; I Bucket initialized?

return &table—->buckets[index].value;

s \

Return pointer into the
bucket array!

Thursday, July 18, 13

Vulnerability

Hashtable<K,V>%x table = ...;

V xvalue = find(table, ...);

insert(table, ...); t Create alias)
use(value); Y Resize bucket array)

t Dangling pointer)

Thursday, July 18, 13

A problem for everyone

Q: Doesn’t garbage collection solve this?

A: Not really.

e.g., Java’s ConcurrentModificationException

Thursday, July 18, 13

Iteration holds pointers

for (std::vector<int>::iterator it = vec.begin();

it !'= vec.end();
++1t)
std::cout << ' ' << xit;

[encapsulates a pointer]

(for-each hashtable (lambda (x) ...))

[if hashtable is mutable, same problem)

Thursday, July 18, 13

Implications

During iteration, the buckets array is aliased.

+
Insertion can resize the array.
=>

Insertion during iteration can allow a
foreign website to take over your computer.

(e.g.,Bug 810718)

Thursday, July 18, 13

Enter: Rust

Think: C++ meets ML/Haskell meets Erlang
(meets Cyclone, ML Kit,and many others)

12

Thursday, July 18, 13

Credit where credit is due

Rust is the product of a community
too humerous to list here.

https://github.com/mozilla/rust/blob/master/AUTHORS.txt

Thursday, July 18, 13

https://github.com/mozilla/rust/blob/master/AUTHORS.txt
https://github.com/mozilla/rust/blob/master/AUTHORS.txt

What Rust has...

— Traits (type classes)

— Ownership (affine types) <

— Algebraic data types

— Lifetimes (regions) <:

— Actor-style concurrency

What Rust doesn’t have...

— Null pointers
— Dangling pointers
— Segmentation faults

— Data races

— Mandatory GC

Thursday, July 18, 13

Why optional GC?

|. Efficiency and predictability

* Avoid unpredictable latency
e Particularly on mobile

2. Memory disjoint tasks

* If you can send memory,
you can free it.

Thursday, July 18, 13

let mut table: Hashtable<K,V> = ..

{

}

table.insert(...);:

let value

table.insert(...);

match value { ... }

Preview: Freezing

|]
ol /

\

Create hashtable)

table.find(...

) ;

_

Find “freezes’’ hashtable for
scope of value

~

J

lllegal, hashtable frozen

~

J

~

G

OK, value is out of scope

\

J

Thursday, July 18, 13

struct Hashtable<K, V> {

}

struct Bucket<K,V> {

}

Hashtable in Rust

buckets: ~[0Option<Bucket<K,V>>]

key: K,
value: V

\\

~[T]: Owned pointer
to an array

~

J

Thursday, July 18, 13

What’s in a type

[~[T]: Owned pointer to an array J

~[Option<Bucket<K, V>>]

t Option<T>:1| guess you've seen this before)

What is ownership?

In Rust, ownership means:
The Right To Free Memory

—

Control over aliasing

20

Thursday, July 18, 13

Ownership is implicit in C/C++

Some pointers are temporary:

memcpy (void *xdest, const void xsrc, uintptr_t count);

Vx find(Hashtable<K,V> xtable, K xkey);

Some pointers are not:

struct Hashtable {
Bucket<K, V> xbuckets;

h

void *realloc(void %, ...);
void free(void x);

21

Thursday, July 18, 13

Ownership is explicit in Rust

Temporary pointers are designated &T

Owned pointers are designated ~T

Managed pointers are designated @1

22

Owned pointers

Owned pointers never alias one
another and are automatically freed:

{
let x: ~int = ~22;

; (\ Allocate owned integer j

(\ x freed automatically here]

23

Thursday, July 18, 13

Owned pointers are moved

Owned pointers are moved from
place to place.

fn move from() {
let x: ~int = ~22;

move to(x); { Moves x into callee’s stack frame)

printf(“%sd”, *x); // Error: x was moved

}
_ X no longer accessible)
fn move_to(y: ~int) {

!) T Freed by callee)

24

Thursday, July 18, 13

Moving into a data structure

Owned pointers can also be
owned by a data structure.

let b = ~[]; < Create a fresh array)
let table = Hashtable {

b puckets: B i Move it into the hashtable)
b[@] = ...; // Error

table.buckets[0] = ...; // OK

t Only accessible via table)

25

Thursday, July 18, 13

Hashtable<K, V> buckets

o = m

:length‘<<: Boundschecks :)

~[0ption<Bucket<K, V>>]

?{ Unaliased)

: 4

Option<Bucket<K, V>>

Bucket<K, V>

N
discriminant

~N

4 .
key (\ None vs Some]
value :

[Data if Some, like a C union j\

-~ - -

Thursday, July 18, 13

Insertion, first attempt

fn insert<K, V>(
mut table: ~Hashtable<K,V>,
key: K, :
value: V) \ Take ownership of a hashtable)
—> ~Hashtable<K, V>

if (table full) {
table.buckets = resize buckets(table.buckets);

; \ Safe because of ownership)

let index = find_bucket(table, &key);
table.buckets[index] = Some(Bucket {key: key,

L Update buckets array)Valuﬁ: value}):

return table:
L Give table back to the caller.)

27

}

Thursday, July 18, 13

Mutability in Rust

let x = 22;
X +=1; // Error

\

let mut x = 22;
X +=1; // OK

G

L ocal variables must be
declared as mutable

~

J

fn update(x: int) {

X += 1; // Error

}

fn update(mut x: int) A

X +=1; // OK\
I3

28

Parameters too

Thursday, July 18, 13

Mutability and ownership

N
mu't table If X is mutable, everything
owned by X is mutable too

J

mut buckets

--

Thursday, July 18, 13

Inherited mutability

fn insert<K, V>(
mut table: ~Hashtable<K,V>,
key: K, :
value: V) \ table is mutable)
—> ~Hashtable<K, V>

if (table full) {
table.buckets = resize buckets(table.buckets);

; \ table.buckets is mutable)

let index = find_bucket(table, &key);
table.buckets[index] = Some(Bucket {key: key,
| value: valuel});

table Ltable.buckets[index] is mutable)

30

Thursday, July 18, 13

Ownership is explicit in Rust

Temporary pointers are designated &T

Owned pointers are designated ~T

Managed pointers are designated @1

31

Borrowing

fn insert<K, V>(
table: &mut Hashtable<K, V>,

ngl/;el:(’V) \ Mutable borrowed pointer as input)
{
if (table full) { [Mutable borrow)

resize_buckets(&mut table.buckets);

r [Immutable borrows)

let index = find _bucket (&ktable, &key);
table.buckets[index] = Some(Bucket {key: key,
value: valuel});

32

Thursday, July 18, 13

table .~ T

|
[|
mut v

Borrowing

Borrowed pointer to a
mutable hashtable

~

mut [buckets

Hashtable owns its array,
thus mutability is inherited

~

J

--

Thursday, July 18, 13

Mutability and uniqueness

&mut T Borrowed pointer to mutable data

Type system guarantees uniqueness:

no other mutable pointer to the same
data.

Linearly tracked.

34

Thursday, July 18, 13

Mutable borrows

E Mutable local variable)

let mut x = 5;

{

E X is borrowed for the lifetime of y)

let y = &mut Xx;
X += 1; // Error: borrowed
xy += 1; // OK

}

X += 13 // OK

[Borrow has expired, y out of scope)

Mutable borrows prevent
owner from writing.

35

Thursday, July 18, 13

Lifetimes

let mut x = 5;

: ~'Db
: &'b mut int
{ Qy) :

let y = &mut Xx;

X += 1; // Error: borrowed

xy += 1; // OK ‘e
¥

X += 13 // OK

36

Thursday, July 18, 13

Lifetime parameters

fn insert<K, V>(
table: &mut Hashtable<K, V>,
key: K,
value: V)

{

} Q\/For any lifetime ‘a specified by caller...)

{

a
&‘a mut Hashtable<K, V>

37

Thursday, July 18, 13

Mutable borrows require

|. Data must be mutable

let mut x = 5;
let vy = &mut Xx;

OK

Yy S

4 mut
mut x: 5 l.

5

-

s

q
4

let X

= 5;
let y = &mut Xx;
ILLEGAL
;Lmut

Thursday, July 18, 13

Mutable borrows require

2. Data must live long enough

let vy;

{ {
let mut x = 5;

let v = &mut x; let mut x = 5;

y = &mut Xx;
' }
Xy += 1;

OK ILLEGAL

4 mut g)
mut x: 5 l\ ! 1 mut
. mut x: 5 -
4 \ Y, ‘,
\y -; y _}__4’

39

Thursday, July 18, 13

Mutable borrows require

3. Data must be uniquely referenced

let mut x = 5;
let y = &mut Xx;

OK

. J

4 mut
mut x: 5 l.

5
) |

y «ma==

40

let mut x = ~5; ~N
let y = &mut *x;| Unusable

OK

while y is
In scope
P Y

g
mut X

nia

Thursday, July 18, 13

Mutable borrows require

3. Data must be uniquely referenced (cont'd)

f (S
let y = &mut *xx; &ative exam

= Ples to
let z = &mut xy; £ \/\/ﬁ
OK
Unusable while z is in sco ej
i REC JIA P
mut X A m/ut
. A
y eea 2 XY N
N Only safe because
Z IR . &mutunique

4]

Thursday, July 18, 13

Immutable borrowed pointers

&T

Borrowed pointer to immutable data

May be aliased

42

~

_

Stronger than C++ const,
nobody can modify it

\

J

Thursday, July 18, 13

Immutable borrows

let x = 5;
1

let vy = &x; i Original can still be read]
print(x);

}

Immutable borrows do not restrict
owner from reading.

But there are other restrictions...

43

Thursday, July 18, 13

Freezing

[X declared as mutable]

let mut x = 5;
{ i Frozen for lifetime of y]
let y = &X;

X += 1; // Error

}
X +=1; // OK
T y out of scope, unfrozen]

44

Thursday, July 18, 13

Immutable borrows require

|. Data must live long enough

{ let vy,
let x = 5; 1
let v = &x; let x = 5;
1 y = &X;
}
print(xy);
OK ILLEGAL

[Same as with &mut j

45

Thursday, July 18, 13

Immutable borrows require

2. Mutable data must be uniquely referenced.

let mut x = 5; let mut x = ~5;
let y = &X; let y = &kX;
OK OK
let mut x = ~5;
let y = &mut *xx;
let z = &y, [Same as with &mut j

OK

46

Thursday, July 18, 13

An illegal case...

let mut x = ~5;

let y = &mut *x;

let z : & &mut 1int = &y;
let a = &mut *xxz;

ILLEGAL
(ﬁut X -l——>>G5 j

A
Y -"'1: -~ I’ ;

!)
z L’ <" Path to borrowed
___4 data not guaranteed

3) to be unique

_

47

Thursday, July 18, 13

An illegal case (contd)

let mut x = ~5;

let y = &mut *x;

let z : & &mut 1int = &y;

let z2 = z;

let a = &mut *xxz;

g
mut Xx

y

Z

Z2

<

48

R C

*3 and **z2 access
the same data!

~

Thursday, July 18, 13

Let’s put it all together

Remember find()?

Returns a pointer into the hashtable.

Goal: Ensure that hashtable is not
modified while this pointer is live.

49

Lifetime parameters in find

fn find<‘a, K, V>(
table: &'a Hashtable<K, V>,
key: &K)
—> Option<&’a V>

{
L

50

Thursday, July 18, 13

Lifetime parameters in find

fn find<‘a,K,V>(

-

_

Given: pointer with lifetime ‘a
to an immutable hashtable

~

J

table: &'a Hashtab1e<K V>,

key: &K)
-> Option<&’a V=
{ g A

Yields: (optional) pointer with

~

; klifetime ‘a to an immutable vaIueVJ
~ . , N
In other words, the value returned is valid as long as:
|. the hashtable is valid
@. the hashtable is not mutated ,

J1

Thursday, July 18, 13

Find

fn find<‘a, K, V>(
table: &‘a Hashtable<K, V>,

key: &K)
_> Option<&’a V> Q\/Search for index...)

let index = find_bucket(table, &key);
match table.buckets[index] {

None => None,

Some(ref bucket) => Some(&bucket.value)
1 A

} C Creates a pointer into value being matched)

52

Thursday, July 18, 13

table: &'a Hashtable<K, V>
=> |mmutable with lifetime ‘a

r dle

N J Y .
table.buckets '======- > L anath . Y.
. teng B
&table.buckets[index] ->§ discriminant R4
ref bucket ======-==-- > A A
| (key RS
S&bucket.value '======- +:| [value et
(x) Must be freezable with | :
lifetime at least ‘a [()
\) "‘ ___ ¢:

Thursday, July 18, 13

Voila

let mut table: Hashtable<K,V> = ...;

{
let value = find(&table, ...);

insert(&mut table, ...) ;{ Frozen for lifetime of value)

match value { .o } t EI‘I‘OI",fI"OZGn.)

}

insert(&mut table, ...);

t OK, value out of scope.]

54

Thursday, July 18, 13

But wait, there’s more...

fn compute(input: &[T], output: &mut [T]) {
if output.len() >= threshold {
let (left, right) = output.split();
parallel::do([P
|| compute(input, left),
|| compute(input, right)]);
; else { R K

1 mwutable safe to shave. /

1 Mutable but disjoint. Safe.
Divide bu§fer into two disjoint halves

55

Thursday, July 18, 13

Recap #|

Owned pointers are
moved, not freely aliased.

—

Safe to free.

Safe to send
to another thread.

Safe to resize.

56

Thursday, July 18, 13

Recap #2

Borrowing limits the owner
for the lifetime of the borrow.

=

Borrowed values cannot be
moved or sent between tasks.

Mutable borrowed values can
be temporarily frozen.

57

Thursday, July 18, 13

Recap #3

Mutable borrowed
pointers are unique.

—

Allows reborrowing,
resizing, and possibly
parallelism beyond
actors (wip).

58

Thursday, July 18, 13

More information?

Nicholas Matsakis
nmatsakis@mozilla.com

rust-lang.org

smallcultfollowing.com/babysteps

59

Thursday, July 18, 13

mailto:nmatsakis@mozilla.com
mailto:nmatsakis@mozilla.com

