
Guaranteeing memory
safety in Rust

Nicholas D. Matsakis
Mozilla Research

1

Thursday, July 18, 13

Hashtable in C / C++

template<class K, class V>
struct Hashtable {
 Bucket<K,V> *buckets;
 unsigned num_buckets;
}

template<class K, class V>
struct Bucket {
 bool occupied;
 K key;
 V value;
}

. . .

2

Thursday, July 18, 13

template<class K, class V>
void insert(
 Hashtable<K,V> *table,
 K key,
 V value)
{
 if (table full) {
 table->buckets = realloc(table->buckets, ...);
 }

 unsigned index = find_bucket(table, &key);
 table->buckets[index].key = key;
 table->buckets[index].value = value;
 table->buckets[index].occupied = true;
}

Insertion

Grow arrays as necessary

Initialize the bucket
3

Thursday, July 18, 13

Assumptions
template<class K, class V>
void insert(
 Hashtable<K,V> *table,
 K key,
 V value)
{
 if (table full) {
 table->buckets = realloc(table->buckets, ...);
 }

 unsigned index = find_bucket(table, &key);
 table->buckets[index].key = key;
 table->buckets[index].value = value;
 table->buckets[index].occupied = true;
}

Buckets array is unaliased

Never access bucket if
occupied is false4

Thursday, July 18, 13

Living on the edge

5

Violating either of these assumptions
can lead to a crash

=>

Crashes lead to exploits.

Thursday, July 18, 13

Privacy?

6

Q: Doesn’t privacy solve this?

A: Not really.

Thursday, July 18, 13

Table lookup

template<class K, class V>
V* find(
 Hashtable<K,V> *table,
 K *key)
{
 unsigned index = find_bucket(table, &key);

 if (!table->buckets[index].occupied)
 return NULL;

 return &table->buckets[index].value;
}

7

Find the correct bucket.

Bucket initialized?

Return pointer into the
bucket array!

Thursday, July 18, 13

Vulnerability

8

Hashtable<K,V>* table = ...;

V *value = find(table, ...);

insert(table, ...);

use(value);

Create alias

Resize bucket array

Dangling pointer

Thursday, July 18, 13

A problem for everyone

9

e.g., Java’s ConcurrentModificationException

Q: Doesn’t garbage collection solve this?

A: Not really.

Thursday, July 18, 13

Iteration holds pointers

10

 for (std::vector<int>::iterator it = vec.begin();
 it != vec.end();
 ++it)
 std::cout << ' ' << *it;

encapsulates a pointer

 (for-each hashtable (lambda (x) ...))

if hashtable is mutable, same problem

Thursday, July 18, 13

Implications

11

During iteration, the buckets array is aliased.

+

Insertion can resize the array.

=>

Insertion during iteration can allow a
foreign website to take over your computer.

(e.g., Bug 810718)

Thursday, July 18, 13

Enter: Rust

12

Think: C++ meets ML/Haskell meets Erlang
(meets Cyclone, ML Kit, and many others)

Thursday, July 18, 13

Credit where credit is due

13

Rust is the product of a community
too numerous to list here.

https://github.com/mozilla/rust/blob/master/AUTHORS.txt

Thursday, July 18, 13

https://github.com/mozilla/rust/blob/master/AUTHORS.txt
https://github.com/mozilla/rust/blob/master/AUTHORS.txt

14

– Traits (type classes)

– Ownership (affine types)

– Algebraic data types

– Lifetimes (regions)

– Actor-style concurrency

1

2

What Rust has...

Thursday, July 18, 13

15

– Null pointers

– Dangling pointers

– Segmentation faults

– Data races

– Mandatory GC

What Rust doesn’t have...

Thursday, July 18, 13

Why optional GC?

16

1. Efficiency and predictability

• Avoid unpredictable latency
• Particularly on mobile

2. Memory disjoint tasks

• If you can send memory,
you can free it.

Thursday, July 18, 13

Preview: Freezing

17

let mut table: Hashtable<K,V> = ...;

{
 let value = table.find(...);

 table.insert(...);

 match value { ... }
}

table.insert(...);

Create hashtable

Find “freezes” hashtable for
scope of value

Illegal, hashtable frozen

OK, value is out of scope

Thursday, July 18, 13

18

struct Hashtable<K,V> {
 buckets: ~[Option<Bucket<K,V>>]
}

struct Bucket<K,V> {
 key: K,
 value: V
}

~[T]: Owned pointer
to an array

Hashtable in Rust

Thursday, July 18, 13

19

~[Option<Bucket<K,V>>]
Option<T>: I guess you’ve seen this before

~[T]: Owned pointer to an array

What’s in a type

Thursday, July 18, 13

What is ownership?

20

In Rust, ownership means:

The Right To Free Memory

⇒

Control over aliasing

Thursday, July 18, 13

21

Ownership is implicit in C/C++

memcpy(void *dest, const void *src, uintptr_t count);

Some pointers are temporary:

V* find(Hashtable<K,V> *table, K *key);

Some pointers are not:

struct Hashtable {
 Bucket<K,V> *buckets;
 ...
}

void *realloc(void *, ...);
void free(void *);

Thursday, July 18, 13

Ownership is explicit in Rust

22

Temporary pointers are designated &T

Owned pointers are designated ~T

Managed pointers are designated @T

Thursday, July 18, 13

Owned pointers

23

{
 let x: ~int = ~22;
 …
}

Owned pointers never alias one
another and are automatically freed:

Allocate owned integer

x freed automatically here

Thursday, July 18, 13

Owned pointers are moved

24

fn move_from() {
 let x: ~int = ~22;

 move_to(x);

 printf(“%d”, *x); // Error: x was moved
}

fn move_to(y: ~int) {
 ...
}

Owned pointers are moved from
place to place.

Moves x into callee’s stack frame

x no longer accessible

Freed by callee

Thursday, July 18, 13

Moving into a data structure

25

let b = ~[];

let table = Hashtable {
 buckets: b
};

b[0] = ...; // Error
table.buckets[0] = ...; // OK

Owned pointers can also be
owned by a data structure.

Create a fresh array

Move it into the hashtable

Only accessible via table

Thursday, July 18, 13

discriminant

26

buckets

key
value

length

Option<Bucket<K,V>>

Hashtable<K,V>

~[Option<Bucket<K,V>>]

Bucket<K,V>

. . .

Bounds checks

Unaliased

None vs Some

Data if Some, like a C union

Thursday, July 18, 13

27

Insertion, first attempt
fn insert<K,V>(
 mut table: ~Hashtable<K,V>,
 key: K,
 value: V)
 -> ~Hashtable<K,V>
{
 if (table full) {
 table.buckets = resize_buckets(table.buckets);
 }

 let index = find_bucket(table, &key);
 table.buckets[index] = Some(Bucket {key: key,
 value: value});
 return table;
}

Take ownership of a hashtable

Safe because of ownership

Update buckets array

Give table back to the caller.

Thursday, July 18, 13

28

Mutability in Rust

let x = 22;
x += 1; // Error

let mut x = 22;
x += 1; // OK

fn update(x: int) {
 x += 1; // Error
}

fn update(mut x: int) {
 x += 1; // OK
}

Local variables must be
declared as mutable

Parameters too

Thursday, July 18, 13

If X is mutable, everything
owned by X is mutable too

29

buckets

.[0] [i] [n]

Mutability and ownership
tablemutmut

mutmutmut

Thursday, July 18, 13

30

Inherited mutability
fn insert<K,V>(
 mut table: ~Hashtable<K,V>,
 key: K,
 value: V)
 -> ~Hashtable<K,V>
{
 if (table full) {
 table.buckets = resize_buckets(table.buckets);
 }

 let index = find_bucket(table, &key);
 table.buckets[index] = Some(Bucket {key: key,
 value: value});
 table
}

table is mutable

table.buckets is mutable

table.buckets[index] is mutable

Thursday, July 18, 13

Ownership is explicit in Rust

31

Temporary pointers are designated &T

Owned pointers are designated ~T

Managed pointers are designated @T

Thursday, July 18, 13

32

Borrowing

fn insert<K,V>(
 table: &mut Hashtable<K,V>,
 key: K,
 value: V)
{
 if (table full) {
 resize_buckets(&mut table.buckets);
 }

 let index = find_bucket(&*table, &key);
 table.buckets[index] = Some(Bucket {key: key,
 value: value});
}

Mutable borrowed pointer as input

Mutable borrow

Immutable borrows

Thursday, July 18, 13

Borrowed pointer to a
mutable hashtable

33

buckets

.[0] [i] [n]

Borrowing
table

mut

mut mut mut

Hashtable owns its array,
thus mutability is inherited

mut

Thursday, July 18, 13

Mutability and uniqueness

34

&mut T Borrowed pointer to mutable data

Type system guarantees uniqueness:
no other mutable pointer to the same
data.

Linearly tracked.

Thursday, July 18, 13

Mutable borrows

35

let mut x = 5;

{
 let y = &mut x;
 x += 1; // Error: borrowed
 *y += 1; // OK
}

x += 1; // OK

x is borrowed for the lifetime of y

Mutable borrows prevent
owner from writing.

Mutable local variable

Borrow has expired, y out of scope

Thursday, July 18, 13

Lifetimes

36

let mut x = 5;

{
 let y = &mut x;
 x += 1; // Error: borrowed
 *y += 1; // OK
}

x += 1; // OK

‘a

‘b
‘c
‘d
‘e

y : &’b mut int

Thursday, July 18, 13

Lifetime parameters

37

fn insert<K,V>(
 table: &mut Hashtable<K,V>,
 key: K,
 value: V)
{
 ...
}

fn insert<‘a,K,V>(
 table: &‘a mut Hashtable<K,V>,
 key: K,
 value: V)
{
 ...
}

For any lifetime ‘a specified by caller...

Thursday, July 18, 13

Mutable borrows require

38

1. Data must be mutable

let mut x = 5;
let y = &mut x;

OK

mut x: 5

y

mut

let x = 5;
let y = &mut x;

ILLEGAL

x: 5

y

mut

Thursday, July 18, 13

Mutable borrows require

39

2. Data must live long enough

{
 let mut x = 5;
 let y = &mut x;
}

mut x: 5

y

mut

y

let y;
{
 let mut x = 5;
 y = &mut x;
}
*y += 1;

ILLEGAL

mut x: 5
mut

OK

Thursday, July 18, 13

Mutable borrows require

40

3. Data must be uniquely referenced

let mut x = 5;
let y = &mut x;

OK

mut x: 5

y

mut

let mut x = ~5;
let y = &mut *x;

OK

mut x

y
mut

5

Unusable
while y is
in scope

Thursday, July 18, 13

Mutable borrows require

41

3. Data must be uniquely referenced (cont’d)

let mut x = ~5;
let y = &mut *x;
let z = &mut *y;

OK

mut x

y

z

mut

5 Unusable while z is in scope

Only safe because
&mut unique

Negative examples to come!

Thursday, July 18, 13

Immutable borrowed pointers

42

&T Borrowed pointer to immutable data

May be aliased Stronger than C++ const,
nobody can modify it

Thursday, July 18, 13

Immutable borrows

43

let x = 5;
{
 let y = &x;
 print(x);
}

Original can still be read

Immutable borrows do not restrict
owner from reading.

But there are other restrictions...

Thursday, July 18, 13

Freezing

44

let mut x = 5;
{
 let y = &x;
 x += 1; // Error
}
x += 1; // OK

Frozen for lifetime of y

x declared as mutable

y out of scope, unfrozen

Thursday, July 18, 13

Immutable borrows require

45

1. Data must live long enough

{
 let x = 5;
 let y = &x;
}

let y;
{
 let x = 5;
 y = &x;
}
print(*y);

OK ILLEGAL

Same as with &mut

Thursday, July 18, 13

Immutable borrows require

46

2. Mutable data must be uniquely referenced.

let mut x = 5;
let y = &x;

let mut x = ~5;
let y = &*x;

OK OK

let mut x = ~5;
let y = &mut *x;
let z = &*y;

OK
Same as with &mut

Thursday, July 18, 13

An illegal case...

47

let mut x = ~5;
let y = &mut *x;
let z : & &mut int = &y;
let a = &mut **z;

mut x

y

z

a

5

ILLEGAL

Path to borrowed
data not guaranteed

to be unique

Thursday, July 18, 13

An illegal case (cont’d)

48

let mut x = ~5;
let y = &mut *x;
let z : & &mut int = &y;
let z2 = z;
let a = &mut **z;

mut x

y

z

z2

a

5

*a and **z2 access
the same data!

Thursday, July 18, 13

Let’s put it all together

49

Remember find()?

Returns a pointer into the hashtable.

Goal: Ensure that hashtable is not
modified while this pointer is live.

Thursday, July 18, 13

Lifetime parameters in find

50

fn find<‘a,K,V>(
 table: &‘a Hashtable<K,V>,
 key: &K)
 -> Option<&’a V>
{
 ...
}

Thursday, July 18, 13

Lifetime parameters in find

51

fn find<‘a,K,V>(
 table: &‘a Hashtable<K,V>,
 key: &K)
 -> Option<&’a V>
{
 ...
}

Given: pointer with lifetime ‘a
to an immutable hashtable

Yields: (optional) pointer with
lifetime ‘a to an immutable value V

In other words, the value returned is valid as long as:
1. the hashtable is valid
2. the hashtable is not mutated

Thursday, July 18, 13

52

Find

fn find<‘a,K,V>(
 table: &‘a Hashtable<K,V>,
 key: &K)
 -> Option<&’a V>
{
 let index = find_bucket(table, &key);
 match table.buckets[index] {
 None => None,
 Some(ref bucket) => Some(&bucket.value)
 }
}

Search for index...

Creates a pointer into value being matched

Thursday, July 18, 13

53

discriminant

buckets

key
value

length

table

. . .

ref bucket

&table.buckets[index]

&bucket.value

table: &’a Hashtable<K,V>
=> Immutable with lifetime ‘a

*

*

*

*

(*) Must be freezable with
lifetime at least ‘a

table.buckets

Thursday, July 18, 13

Voila

54

let mut table: Hashtable<K,V> = ...;

{
 let value = find(&table, ...);

 insert(&mut table, ...);

 match value { ... }
}

insert(&mut table, ...);

Frozen for lifetime of value

Error, frozen.

OK, value out of scope.

Thursday, July 18, 13

But wait, there’s more...

55

fn compute(input: &[T], output: &mut [T]) {
 if output.len() >= threshold {
 let (left, right) = output.split();
 parallel::do([
 || compute(input, left),
 || compute(input, right)]);
 } else {
 ...
 }
}

Divide���������	
��
������������������ buffer���������	
��
������������������ into���������	
��
������������������ two���������	
��
������������������ disjoint���������	
��
������������������ halves

Immutable,���������	
��
������������������ safe���������	
��
������������������ to���������	
��
������������������ share.
Mutable,���������	
��
������������������ but���������	
��
������������������ disjoint.���������	
��
������������������ Safe.

Thursday, July 18, 13

Recap #1

56

Owned pointers are
moved, not freely aliased.

⇒
Safe to free.

Safe to send
to another thread.

Safe to resize.

Thursday, July 18, 13

Recap #2

57

Borrowing limits the owner
for the lifetime of the borrow.

⇒
Borrowed values cannot be

moved or sent between tasks.

Mutable borrowed values can
be temporarily frozen.

Thursday, July 18, 13

Recap #3

58

Mutable borrowed
pointers are unique.

⇒
Allows reborrowing,
resizing, and possibly
parallelism beyond

actors (wip).

Thursday, July 18, 13

More information?

59

Nicholas Matsakis
nmatsakis@mozilla.com

rust-lang.org

smallcultfollowing.com/babysteps

Thursday, July 18, 13

mailto:nmatsakis@mozilla.com
mailto:nmatsakis@mozilla.com

