
Draft

Typed Objects in JavaScript

Nicholas D. Matsakis David Herman
Mozilla Research

{nmatsakis, dherman}@mozilla.com

Dmitry Lomov
Google

dslomov@chromium.org

Abstract
JavaScript’s typed arrays have proven to be a crucial API for many
JS applications, particularly those working with large amounts of
data or emulating other languages. Unfortunately, the current typed
array API offers no means of abstraction. Programmers are sup-
plied with a simple byte buffer that can be viewed as an array of
integers or floats, but nothing more.

This paper presents a generalization of the typed arrays API
entitled typed objects. The typed objects API is slated for inclusion
in the upcoming ES7 standard. The API gives users the ability to
define named types, making typed arrays much easier to work with.
In particular, it is often trivial to replace uses of existing JavaScript
objects with typed objects, resulting in better memory consumption
and more predictable performance.

The advantages of the typed object specification go beyond
convenience, however. By supporting opacity—that is, the ability
to deny access to the raw bytes of a typed object—the new typed
object specification makes it possible to store objects as well as
scalar data and also enables more optimization by JIT compilers.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Web applications are becoming increasingly sophisticated. Ad-
vances in JavaScript engines mean that full-fledged applications
can often run with competitive performance to their desktop coun-
terparts. Many of these applications make heavy use of typed ar-
rays.

Typed arrays are an API—initially standardized by the Khronos
Group [13] but now due for inclusion in the next version of the
JavaScript standard, ES6 [3]—that permits JavaScript programs to
create large arrays of scalar types with very little overhead. For
example, users could create an array of uint8 or uint16 values
and be assured that the memory usage per element is only 1 or 2
bytes respectively. (We cover the existing typed arrays API in more
detail in Section 2.)

[Copyright notice will appear here once ’preprint’ option is removed.]

Although the typed arrays API has seen widespread usage, it
also suffers from some important shortcomings. For example, it is
not possible to store references to JavaScript objects in these ar-
rays, nor is it possible to construct higher-level abstractions beyond
scalar types (e.g., an array of structures). Finally, some of the core
decisions in the API design can hinder advanced optimizations by
JIT compilers.

This paper presents the typed objects API. Typed objects is a
generalization of the typed arrays API that lifts these limitations.
In the typed objects API, users can define and employ their own
structure and array types (§3). These structure and array types are
integrated with JavaScript’s prototype system, making it possible
for users to attach methods to them (§4). Moreover, these types are
not limited to scalar data, but can also be used to store references to
JavaScript objects and strings (§5). Finally, we have made a number
of small changes throughout the design that improve the ability of
JavaScript engines to optimize code that uses the typed objects API
(§6).

The typed objects API is currently slated for inclusion in the
ES7 standard, which is expected to be released in 2015. The API
should be available in browsers much earlier than that, however—
and in fact Nightly builds of Firefox already contain an prototype
implementation. Although this implementation is incomplete, we
briefly describe how it integrates with the JIT compilation frame-
work, and give some preliminary measurements of its performance
(§7). Finally, we compare the typed objects API to existing projects
(§8).

2. Typed arrays today
Most implementations of JavaScript today support an API called
typed arrays. Typed arrays provide the means to efficiently manage
large amounts of binary data. They also support some unique fea-
tures such as array buffer transfer, which permits data to be moved
from thread to thread.

The typed array standard defines a number of array types,
each corresponding to some scalar type. For example, the types
Uint32Array and Int32Array correspond to arrays of unsigned
and signed 32-bit integers, respectively. There are also two floating
point array types Float32Array and Float64Array.

Instantiating an array type creates a new array of a specified
length, initially filled with zeroes:

var uints = new Uint32Array(100);
uints[0] += 1; // uints[0] was 0, now 1

Each array type also defines a buffer property. This gives ac-
cess to the array’s backing buffer, called an array buffer. The array
buffer itself is simply a raw array of bytes with no interpretation. By
accessing the array buffer, users can create multiple arrays which
are all views onto the same data:

var uint8s = new Uint8Array(100);
uint8s[0] = 1;

Typed Objects in JavaScript — DRAFT 1 2014/4/1



var uint32s = new Uint32Array(uint8s.buffer);
print(uint32s[0]); // prints 1, if little endian

It is also possible to instantiate an array buffer directly using
new ArrayBuffer(size), where size is the number of bytes.

The final type in the typed array specification is called DataView;
it permits “random access” into an array buffer, offering methods
to read a value of a given type at a given offset with a given endi-
anness. Data view is primarily used for working with array buffers
containing serialized data, which may have very particular require-
ments. We do not discuss it further in this paper.

2.0.1 Using array buffer views to mix data types
The typed array specification itself does not provide any higher
means of abstraction beyonds arrays of scalars. Therefore, if users
wish to store mixed data types in the same array buffer, they must
employ multiple views onto the same buffer and read using the
appropriate array depending on the type of value they wish to
access.

For example, imagine a C struct which contains both a uint8
field and a uint32 field:

struct Example {
uint8_t f1;
uint32_t f2;

};

To model an array containing N instances of this struct requires
creating a backing buffer and two views, one for accessing the
uint8 fields, and one for accessing the uint32 fields. The indices
used with the various views must be adjusted appropriately to
account for padding and data of other types:

var buffer = new ArrayBuffer(8 * N);
var uint8s = new Uint8Array(buffer);
var uint32s = new Uint32Array(buffer);
uint8s[0] = 1; // data[0].f1
uint32s[1] = 2; // data[0].f2
uint8s[8] = 1; // data[1].f1
uint32s[3] = 2; // data[1].f2

This snippet begins by creating a buffer containing N instances of
the struct, allotting 8 bytes per instance (1 byte for the uint8 field,
3 bytes of padding, and then 4 bytes for the uint32 field). Next,
two views (uint8s and uint32s) are created onto this buffer.
Accessing the uint8 field f1 at index i can then be done via the
expression uints8[i*8], and accessing the uint32 field f2 can
be done via the expression uint32s[i*2+1]. (Note that the array
index is implicitly multiplied by the size of the base type.)

One place where multiple views are effectively employed is by
compilers that translate C into JavaScript, such as emscripten [9]
and mandreel [7]. Such compilers employ a single array buffer rep-
resenting “the heap”, along with one view per data type. Point-
ers are representing as indices into the appropriate view; hence a
pointer of type uint32* would be an index into the uint32 array.

2.0.2 Array buffer transfer
JavaScript is a single-threaded language with no support for shared
memory. Most JavaScript engines, however, support the web work-
ers API, which permits users to launch distinct workers that run in
parallel. These workers do not share memory with the original and
instead communicate solely via messaging.

Generally, messages between workers are serialized and recre-
ated in the destination. However, because array buffers contain only
raw, scalar data, it is also possible to transfer an array buffer to an-
other worker without doing any copies.

Transfering an array buffer does not copy the data. Instead, the
data is moved to the destination, and the sender loses all access.

Any existing aliases of that buffer or views onto that buffer are
neutered, which means that their connection to the transferred
buffer is severed. Any access to a neutered buffer or view is treated
as if it were out of bounds.

Array buffer transfer is an extremely useful capability. It permits
workers to offload large amounts of data for processing in a parallel
thread without incurring the costs of copying.

2.0.3 Limitations
The typed arrays have proven to be very useful and are now a
crucial part of the web as we know it. Unfortunately, they have a
number of shortcomings as well. Alleviating these shortcomings is
the major goal of the typed objects work we describe in this paper.

The single biggest problem is that typed arrays do not offer any
means of abstraction. While we showed that it is possible to store
mixed data types within a single array buffer using multiple views,
this style of coding is inconvenient and error-prone. It works well
for automated compilers like emscripten but is difficult to use when
writing code by hand.

Another limitation is that typed arrays can only be used to
store scalar data (like integers and floating point values) and not
references to objects or strings. This limitation is fundamental to
the design of the API, which always permits the raw bytes of a
typed array to be exposed via the array buffer. Even with scalar
data, exposting the raw bytes creates a small portability hazard
with respect to endianness; if however the arrays were to contain
references to heap-allocated data, such as objects or strings, it
would also present a massive security threat.

The technique of aliasing multiple views onto the same buffer
also creates an optimization hazard. JavaScript engines must be
very careful about reordering accesses to typed array views, be-
cause any two views may in fact reference the same underlying
buffer. In practice, most JITs simply forego reordering, since they
do not have the time to conduct the required alias analysis to show
that it is safe.

3. The Typed Objects API in a nutshell
The Typed Objects API is a generalization of the Typed Arrays
API that supports the definition of custom data types. Along the
way, we also tweak the API to better support optimization and
encapsulation.

3.1 Defining types
The typed objects API is based on the notion of type objects. A
type object is a JavaScript object representing a type. Type objects
define the layout and size of a continuous region of memory. There
are three basic categories of type objects: primitive type objects,
struct type objects, and array type objects.

Primitive type objects. Primitive type objects are type objects
without any internal structure. All primitive type objects are pre-
defined in the system. There are 11 of them in all:

any uint8 int8 float32
object uint16 int16 float64
string uint32 int32

The majority of the primitive types are simple scalar types, but
they also include three reference types (any, object, and string).
The reference types are considered opaque, which means that users
cannot gain access to a raw array buffer containing instances of
these types. The details of opacity are discussed in Section 5.

Struct type objects. Type objects can be composed into structures
using the StructType constructor:

var Point = new StructType({x:int8, y:int8});

Typed Objects in JavaScript — DRAFT 2 2014/4/1



x

y

x

y Line

Point

int8

Figure 1: Layout of the Line type defined in Section 3.1.

This example constructs a new type object called Point. This type
is a structure with two 8-bit integer fields, x and y. The size of each
Point will therefore be 2 bytes in total.

In general, the StructType constructor takes a single object
as argument. For each property f in this object, there will be a
corresponding field f in the resulting struct type. The type of this
corresponding field is taken from the value of the property f, which
must be a type object.

Structures can also embed other structures:

var Line = new StructType({from:Point, to:Point};

Here the new type Line will consist of two points. The layout
of Line is depicted graphically in Figure 1. It is important to
emphasize that the two points are laid out continuously in memory
and are not pointers. Therefore, the Line struct has a total size of 4
bytes.

Array type objects. Array type objects are constructed by invok-
ing the arrayType() method on the type object representing the
array elements:

var Points = Point.arrayType(2);
var Line2 = new StructType({points:Points});

In this example, the type Points is defined as a 2-element
array of Point structures. Array types are themselves normal type
objects, and hence they can be embedded in structures. In the
example, the array type Points is then used to create the struct
type Line2. Line2 is equivalent in layout to the Line type we saw
before but it is defined using a two-element array instead of two
distinct fields.

The arrayType() constructor can be invoked multiple times to
create multidimensional arrays, as in this example which creates an
Image type consisting of a 1024x768 matrix of pixels:

var Pixel = new StructType({r:uint8, g:uint8,
b:uint8, a:uint8});

var Image = Pixel.arrayType(768).arrayType(1024);

3.2 Instantiating types
Once a type object T has been created, new instances of T can be
created by calling T(init), where init is an optional initializer.
The initial data for this instance will be taken from the initializer, if
provided, and otherwise default values will be supplied.

If the type object T is a primitive type object, such as uint8
or string, then the instances of that type are simply normal
JavaScript values. Applying the primitive type operators sim-
ply acts as a kind of cast. Hence uint8(22) returns 22 but
uint8(257) returns 1.

Instances of struct and array types, in contrast, are called typed
objects. A typed object is the generalized equivalent of a typed
array; it is a special kind of JavaScript object whose data is backed
by an array buffer. The properties of a typed object are defined by
its type: so an instance of a struct has a field for each field in the
type, and an array has indexed elements.

As an example, consider this code, which defines and instanti-
ates a Point type:

var Point = new StructType({x:int8, y:int8});
...
var point = Point(); // x, y initially 0
point.x = 22;
point.y = 257; // wraps to 1

Since Point() is invoked with no arguments, all the fields are
initialized to their default values (in this case, 0). Assigning to the
fields causes the value assigned to be coerced to the field’s type
and then modifies the backing buffer. In this example, the field y is
assigned 257; because y has type int8, 257 is wrapped to 1.

Struct types can also be created using any object as the initial-
izer. The initial value of each field will be based on the value of cor-
responding field within the initializer object. This scheme permits
standard JavaScript objects to be used as the initializer, as shown
here:

var Point = new StructType({x:int8, y:int8});
...
var point = Point({x: 22, y: 257});
// point.x == 22, point.y == 1, as before

The value of the field is recursively coerced using the same rules,
which means that if you have a struct type that embeds other struct
types, it can be initialized using standard JavaScript objects that
embed other objects:

var Point = new StructType({x:int8, y:int8});
var Line = new StructType({from:Point, to:Point});
var line = new Line({from:{x:22, y:256},

to:{x:44, y:66}});
// line.from.x == 22, line.from.y == 1
// line.to.x == 44, line.to.y == 66

Assignments to properties in general follow the same rules as
coercing an initializer. This means that one can assign any object to
a field of struct type and that object will be adapted as needed. The
following snippet, for example, assigns to the field line.from,
which is of Point type:

var Point = new StructType({x:int8, y:int8});
var Line = new StructType({from:Point, to:Point});
...
var line = Line();
line.from = {x:22, y:257};
// line.from.x == 22, line.from.y == 1

As before, line.from.x and line.from.y are updated based on
the x and y properties of the object.

Creating an array works in a similar fashion. The following
snippet, for example, creates an array of three points, initialized
with values taken from a standard JavaScript array:

var Point = new StructType({x:int8, y:int8});
var PointVec = Point.arrayType(3);
...
var points = PointVec([{x: 1, y: 2},

{x: 3, y: 4},
{x: 5, y: 6}]);

Note that here the elements are Point instances, and hence can be
initialized with any object containing x and y properties.

For convenience and efficiency, every type object T offers a
method array() which will create an array of T elements without
requiring an intermediate type object. array() can either be sup-
plied the length or an example array from which the length is de-
rived. The previous example, which created an array of three points
based on the intermediate type object PointVec, could therefore be
rewritten as follows:

var Point = new StructType({x:int8, y:int8});
...

Typed Objects in JavaScript — DRAFT 3 2014/4/1



backing buffer

x

y

x

y

line line.to

Figure 2: Accessing a property of aggregate type returns a new
typed object that aliases a portion of the original buffer.

var points = Point.array([{x: 1, y: 2},
{x: 3, y: 4},
{x: 5, y: 6}]);

In this version, there is no need to define the PointVec type at all.

3.3 Accessing properties and aliasing
Accessing a struct field or array element of primitive type returns
the value of that field directly. For example, accessing the fields of
a Point, which have int8 type, simply yields JavaScript numbers:

var Point = new StructType({x:int8, y:int8});
...
var point = Point({x: 22, y: 44});
var x = point.x; // yields 22

Accessing a field or element of aggregate type returns a new
typed object which points into the same buffer as the original
object. Consider the following example:

var Point = new StructType({x:int8, y:int8});
var Line = new StructType({from:Point, to:Point});
...
var line = Line({from:{x:0, y:1},

to:{x:2, y:3}});
var point = line.to;
point.x = 4; // now line.to.x == 4 as well

Here, the variable line is a struct containing two Point embed-
ded within. The expression line.to yields a new typed object
point that aliases line, such that modifying point also modi-
fies line.to. That is, both objects are views onto the same buffer
(albeit at different offsets). The aliasing relationships are depicted
graphically in Figure 2: the same backing buffer is referenced by
line and the result of line.to.

3.3.1 Equality of typed objects
The fact that a property access like line.to yields a new typed
object raises some interesting questions. For one thing, it is gen-
erally true in JavaScript that a.b === a.b, unless b is a getter.
But because the === operator, when applied to objects, generally
tests pointer equality for objects, line.to === line.to would
not hold, since each evaluation of line.to would yield a distinct
object.

We chose to resolve this problem by having typed objects use
a structural definition of equality, rather than testing for pointer
equality. In effect, in our system, a typed object can be considered
a four tuple:

1. Backing buffer;

2. Offset into the backing buffer;

3. Type and (if an array type) precise dimensions;

4. Opacity (see Section 5).

1 function Cartesian(x, y) {
2 this.x = x;
3 this.y = y;
4 }
5 Cartesian.prototype.toPolar = function() {
6 var r = Math.sqrt(x*x + y*y);
7 var c = Math.atan(y / x);
8 return new Polar(r, c);
9 };

10 function Polar(r, c) {
11 this.r = r;
12 this.c = c;
13 }
14 var cp = new Cartesian(22, 44);
15 var pp = cp.toPolar();

Figure 3: Defining classes for cartesian and polar points in standard
JavaScript.

Cartesian

prototype toPolar

[[Prototype]]

cp

x

y

Figure 4: Prototype relationshipships for the Cartesian function
and one of its instances, cp. The label [[Prototype]] indicates
the prototype of an object.

1 var Cartesian = new StructType({x:float32,
2 y:float32});
3 Cartesian.prototype.toPolar = function() {
4 var r = Math.sqrt(x*x + y*y);
5 var c = Math.atan(y / x);
6 return Polar({r:r, c:c});
7 };
8 var Polar = new StructType({r:float32,
9 c:float32});

10 var cp = Cartesian({x:22, y:44});
11 var pp = cp.toPolar();

Figure 5: Attaching methods to type objects works just like attach-
ing methods to regular JavaScript functions.

Two typed objects are considered equal if all of those tuple ele-
ments are equal. In other words, even if line.to allocates a fresh
object each time it is executed, those objects would point at the
same buffer, with the same offset and type, and the same opacity,
and hence they would be considered equal.

In effect, the choice to use structural equality makes it invisible
to end-users whether line.to allocates a new typed object or
simply uses a cached result. This is not only more user friendly
(since line.to === line.to holds) but can also be important
for optimization, as discussed in Section 6.

4. Integrating with JavaScript prototypes
Typed objects are designed to integrate well with JavaScript’s
prototype-based object system. This means that it is possible to
define methods for instances of struct and array types.

Typed Objects in JavaScript — DRAFT 4 2014/4/1



The ability to define methods makes it possible to migrate from
normal JavaScript “classes”1 to types based around typed objects.
This is particularly useful for common types, as the representation
of typed objects can be heavily optimized.

In this section, we describe how typed objects are integrated
with JavaScript’s prototype system. Before doing so, however, we
briefly cover how ordinary prototypes in JavaScript work, since the
system is somewhat unusual.

4.1 Standard JavaScript prototypes
In prototype-based object systems, each object O may have an
associated prototype, which is another object. To lookup a property
P on O, the engine first searches the properties defined on O itself. If
no property named P is found on O, then the search continues with
O’s prototype (and then the prototype’s prototype, and so on).

One very common pattern with prototypes is to emulate classes
by having a designated object P that represents the class. This
object contains properties for the class methods and so forth. Each
instance of the class then uses that object P for its prototype. Thus
looking up a property on an instance will fallback to the class.

JavaScript directly supports this class-emulation pattern via its
new keyword. Figure 3 demonstrates how it works. A “class” is de-
fined by creating a function that is intended for use as a constructor.
In Figure 3, there are two such functions: Cartesian, for cartesian
points, and Polar, for polar points. Each function has an associated
prototype field which points to the object that will be used as the
prototype for instances of that function (called P in the previous
paragraph). For a given constructor function C, therefore, one can
add methods to the class C by assigning them into C.prototype,
as seen on line 5 of Figure 3.

New objects are created by writing a new expression, such
as the expression new Cartesian(...) that appears on line 14.
The effect of this is to create a new object whose prototype is
Cartesian.prototype, and then invoke Cartesian with this
bound to the new object. The function Cartesian can then initial-
ize properties on this as shown. Note that the property prototype
on the function Cartesian is not the prototype of the function, but
rather the prototype that will be used for its instances.

The prototype relationship for the function Cartesian and
the instance cp is depicted graphically in Figure 4. The diagram
shows the function Cartesian and its instance cp. The function
Cartesian has a single property, prototype, which points at an
(unlabeled) object O. O has a single property, which is the method
toPolar that is installed in the code on line 5. O serves as the
prototype for the instance cp. In addition, the instance cp has
two properties itself, x and y. Therefore, an access like cp.x will
stop immediately, but a reference to cp.toPolar will search the
prototype O before being resolved.

4.2 Prototypes and typed objects
Typed objects make use of prototypes in the same way. Struct and
array type objects define a prototype field, just like the regular
JavaScript functions. When a struct or array T is instantiated, the
prototype of the resulting typed object is T.prototype. Installing
methods on T.prototype therefore adds those methods to all
instances of T.

Figure 5 translates the example from Figure 3 to use typed
objects. It works in a very analagous fashion. Two type objects,
Cartesian and Polar, are defined to represent coordinates. A
toPolar method is installed onto Cartesian.prototype just as
before (line 3). As a result, instances of Cartesian (such as cp)
have the method toPolar, as demonstrated on line 11. In fact,
because both normal JavaScript functions and typed objects handle

1 As JavaScript is prototype-based, a class is really more of a convention.

1 var Color = new StructType({r:uint8, g:uint8,
2 b:uint8, a:uint8});
3 var Row384 = Color.arrayType(384);
4 var Row768 = Color.arrayType(768);
5
6 Color.arrayType.prototype.average = function() {
7 var r = 0, g = 0, b = 0, a = 0;
8 for (var i = 0; i < this.length; i++) {
9 r += this[i].r; g += this[i].g;

10 b += this[i].b; a += this[i].a;
11 }
12 return Color({r:r, g:g, b:b, a:a});
13 };
14
15 var row384 = Row384();
16 var avg1 = row384.average();
17
18 var row768 = Row768();
19 var avg2 = row768.average();

Figure 6: Defining methods on an array type. Methods installed
on Color.arrayType.prototype are available to all arrays of
colors, regardless of their length.

Color.arrayType

prototype average

Row384

prototype

Row768

prototype

row384

[[Prototype]]

row768

[[Prototype]]

Figure 7: The prototype relationships for the types and instances
from Figure 6.

prototypes in such a similar fashion, we can use the same diagram
(Figure 4) to depict both of them.

In the example as written, the typed objects code is not a drop-in
replacement for the standard JavaScript version, due to differences
in how instances of Cartesian are created. For example, creating
a coordinate with typed objects is written:

Cartesian({x:22, y:44})

but in the normal JavaScript version it was written:

new Cartesian(22, 44)}

This difference is rather superficial and easily bridged by creating
a constructor function that returns an instance of the struct type:

var CartesianType = new StructType({...});
CartesianType.prototype.toPolar = ...;
function Cartesian(x, y) {
return CartesianType({x:x, y:y});

}

Due to the specifics of how JavaScript new expressions work,
existing code like new Cartesian(22, 44) will now yield a
CartesianType object.

4.3 Prototypes and arrays
One important aspect of the design is that all array type objects
with the same element type share a prototype, even if their lengths
differ. The utility of this design is demonstrated in Figure 6. This
code creates a Color type and then two different types for arrays of

Typed Objects in JavaScript — DRAFT 5 2014/4/1



Color.arrayType

prototype (1)
[[P.]]

Color.arrayType.arrayType

prototype (2)

[[P.]]

. . .

Color(.arrayType)*.arrayType

prototype (n)

[[P.]]

(all)

Figure 8: Illustrates the prototypes for multidimensional arrays.
There is a distinct prototype for each number of dimensions. Each
of those prototypes in turn inherits from a common prototype
representing an array of any number of dimensions. The label
[[P.]] here indicates the prototype of an object.

color, Row384 and Row768. Even though these types have different
lengths, the values of their prototype fields are the same, and
hence Row384 and Row768 will have the same prototype. The
prototypes at play are illustrated graphically in Figure 7.

The prototype for array types with a given element can be
accessed without actually instantiating an array type object. On line
6 of Figure 6, the method average() is defined and attached to
Color.arrayType.prototype. As shown in Figure 7, this is the
same object which will later be used as the prototype for Row384
and Row768.

The reason that all arrays share the same prototypes regardless
of length is that many programs never instantiate explicit array type
objects at all, since the lengths of arrays often vary with the input.
For example, rather than defining explicit Row384 and Row768
types, it is more common to create arrays of colors ad-hoc:

var row384 = Color.array(384);
var avg1 = row384.average();
var row768 = Color.array(768);
var avg2 = row768.average();

Our design accommodates this pattern without difficulty as creating
methods for array instances does not require creating actual array
type objects.

The decision to have all array type objects share a prototype
came late in the design cycle. In the initial design, all type objects
– whether array or not – had their own prototype field.2 This
led to numerous problems. One problem was that because the
lengths of most arrays are not uniform, users frequently instantiated
“throw-away” array type objects that were used for exactly one
array, which is both annoying and inefficient. Another problem was
that many methods return arrays whose lengths are not known in
advance; filter() is an example. If the type of an array includes
its length, then clearly the type of array returned by filter()
cannot be known in advance, and thus users cannot identify which
prototype it will have. The current design avoids these obstacles.

4.3.1 Multidimensional arrays
One of the main uses cases for typed objects is to support numer-
ical applications, which often work with matrices and other multi-
dimensional structures. The prototypes for multi-dimensional ar-
rays follow the same principles as for single-dimensional arrays:
all arrays with the same rank – that is, the same number of dimen-
sions – share a prototype, regardless of the precise lengths of each

2 In type theory terms, one might say that in our initial design, all types
were nominal, whereas in the current design, struct types are nominal but
array types are structural. It is encouraging to note that many statically typed
languages take a similar approach.

dimension. For example, all two-dimensional arrays of Color will
have the same prototype, but a three-dimensioanl array of Color
would have a distinct prototype. These prototypes can be accessed
by stringing together references to arrayType. The prototype that
will be used for three-dimensional arrays of Color elements, for
example, is available using the path:

Color.arrayType.arrayType.arrayType.prototype

Both for efficiency and because there can be an arbitrary number
of dimensions, the prototypes for arrays are created lazilly upon
request.

Finally, to permit the creation of methods that apply to any
multidimensional array, regardless of the number of dimensions,
all prototypes for arrays inherit from a common ancestor prototype,
as shown in Figure 8. The diagram depicts how there are separate
prototypes for arrays of each possible dimension (labeled (1), (2),
and (n)). Each of those prototypes then inherits from a common
prototype (labeled (all)) that applies to all arrays of Color, no
matter how many dimensions they have.

5. Array buffers and opacity
The original typed arrays API does not include any means of
protecting or encapsulating an array buffer. Given a typed array
view, it is always possible to recover the original array buffer and
create a new view on top of it. This unrestrictied aliasing has many
important ramifications:

1. Objects and other reference types (like strings) cannot be al-
lowed into an array buffer, because that array buffer could al-
ways be reinterpreted casting into an array of bytes. This would
permit users to observe the raw bytes of a pointer value. This is
a security nightmare.

2. Passing a view on a portion of a buffer into a function actually
gives that function access to the entire buffer. There is no means
to securely give away access only to a portion of the buffer. This
limits the sorts of APIs we can support.

3. In the absence of alias analysis, the JIT must assume that a write
to any typed array potentially affects every other typed array.
This inhibits optimization.

Like typed arrays, the typed objects API includes two stan-
dalone functions, buffer() and offset(), that can be used to
obtain the backing buffer in which a typed object resides as well as
the offset of its data. Unlike typed arrays, however, we also include
the means to deny this access.

Any individual typed object can be made opaque, in which
case the buffer() function returns null (and offset() returns
undefined). This is done by invoking the module-level function
opaque(obj), which returns an opaque copy of the typed object
obj. The new typed object is otherwise identical to the original:
it points into the same array buffer, with the same offset, and the
same type.

Opaque typed objects are useful because they serve as a capabil-
ity that only exposes a limited portion of the backing buffer; the re-
mainder of the buffer that is outside the scope of that typed object’s
type remains inaccessible. For example, given an array of structs
points, the expression opaque(points[3]) yields a typed ob-
ject that can only be used to access element 3 of the array. If the
typed object were not opaque, someone who possesses points[3]
could simply obtain access to the entire buffer and thus access other
elements of points.3

3 The need for encapsulation is immediate and real: for example, we are
building parallel APIs that employ opaque pointers to guarantee data-race
freedom.

Typed Objects in JavaScript — DRAFT 6 2014/4/1



1 var Color = new StructType({r: uint8, g: uint8,
2 b: uint8, a: uint8});
3 var Palette = Color.arrayType(256);
4 var Header = new StructType({palette: Palette,
5 height: uint32,
6 width: uint32});
7
8 function process(header, data) {
9 for (var x = 0; x < header.width; x++)

10 for (var y = 0; y < header.height; y++)
11 processDataPoint(data[x][y], header.palette);
12 }

Figure 9: Example program that is easier to optimize due to the
way equality is defined for typed objects. In particular, the access
to header.palette on line 11 can easily be identified as loop
invariant.

It is also possible for a type object to be opaque. When a
type object is opaque, then all of it instances are automatically
opaque. The reference types string, any, and object are always
opaque, as are any struct or array types that transitively contain ref-
erence types. This avoids the security hazard of reinterpret casting
a pointer into its raw bytes, and also avoids exposing the precise
way that each engine represents pointers.

In addition, an opaque type can be explicitly derived from any
other type using the opaqueType() method. opaqueType() re-
turns a new type object with the same structural definition as the re-
ceiver, but which is opaque. For example, the following code snip-
pet creates an opaque version of the Color type, so that instances
of Color never expose their backing buffer:

var Color = new StructType({r: uint8, g: uint8,
b: uint8, a: uint8})

.opaqueType();

Using opaque types has some subtle advantages for optimization,
as is discussed in the next section.

6. Enabling optimization
The typed objects API has been designed with an eye towards
enabling aggressive optimization in JavaScript JITs. In this section,
we describe some of the finer points of the design and why they are
important.

6.1 Defining equality for typed objects
As discussed in Section 3.3.1, equality between typed objects is de-
fined structurally, unlike other objects which use pointer equality.
Section 3.3.1 showed that this definition better meets user expec-
tations but another important motivation for this change is perfor-
mance. A pointer-based notion of equality obligates the engine to
allocate a fresh typed object unless it can prove that this object is
never tested for equality with any other object. This can lead to
non-obvious performance pitfalls.

Consider the code in Figure 9, specifically line 11. This line in-
vokes a function and passes header.palette as the second argu-
ment. Because the type Palette is an aggregate type, the expres-
sion header.palette (potentially) allocates a new typed object
on every iteration. This in turn stresses the garbage collector and
leads to more frequent GCs. This situation is particularly unfortu-
nate because the expression header.palette looks innocuous.

In an ideal world, the JavaScript engine would extract the
expression header.palette as loop invariant. After all, the
only effect of the expression is to create a new typed object

Benchmark 1. Standard 2. Typed Objects Ratio 1:2
Array of scalars 1040ms 837ms 1.243

Struct fields 936ms 1227ms 0.763
Array of structs 1970ms 1064ms 1.852

Figure 10: Performance of various microbenchmarks on the proto-
type Firefox implementation. We wrote equivalent versions of each
microbenchmark using standard JavaScript objects and typed ob-
jects, and measured the execution time.

that aliases header.4 Using a pointer-based notion of equality,
though, this optimization would generally only be possible if
processDataPoint() were inlined and the engine could be sure
that the result of header.palette never escapes. Using a struc-
tural definition of equality frees the engine from this restriction,
as the user cannot observe whether header.palette is evaluated
once or many times.

6.2 Memory usage and opacity
Using the typed objects API rather than standard JavaScript objects
naturally gives the JavaScript engine a lot of room to optimize
memory usage. The struct definition declares all possible fields and
their types, so in principle engines can allocate precisely the correct
amount of memory required (along with some headers, naturally).
Opaque types also imply that the array buffer for instances of that
type will never be accessed externally, which may help the engine
to optimize the representation further.

6.3 Opacity and aliasing
Opaque types also give strong aliasing guarantees than transparent
types, which can be useful for optimization. Specifically, If the
engine sees accesses to two distinct fields that are both defined in
opaque types, it can be guaranteed that those two fields do not alias.
This can permit much more aggressive reordering of code. With
transparent types, engines must always consider the possibility that
the same buffer has been reinterpreted as two different types.

7. Implementation Status
The typed objects API described in this paper is being standardized
as part of the ES7 specification. The major design work is com-
pleted and we are in the process of writing the formal text.

7.1 Firefox Implementation
The API is being actively implemented into Firefox’s SpiderMon-
key JavaScript engine and is available in Nightly builds. It will be-
come more broadly available as standardization proceeds. As of the
time of this writing, the implementation targets an older version of
the API than what is described in this paper. We expect it to be up-
dated to match the API described here within the coming months.

Preliminary integration with the JIT has also been done and ini-
tial performance results are encouraging, though much work re-
mains. The API fits particularly well with SpiderMonkey’s existing
type inference infrastructure [11]. Like all optimizing JavaScript
engines (and indeed all optimizing JITs), SpiderMonkey employs a
two-phase system. When code is first executed, the engine mon-
itors the types of all objects it encounters. Once a function has
been executed many times, it is identified as a hot method, and
the engine recompiles it. At this point, the engine has gathered a
reasonably complete profile of what types of objects the function

4 Note that it is not important whether header itself is aliased or not, as
those aliases cannot change the buffer with which header is associated,
nor the type of header.

Typed Objects in JavaScript — DRAFT 7 2014/4/1



commonly operates on, and thus it can specialize for those types. If
new types of objects are encountered, the optimized code will have
to be thrown out and recompiled with weaker assumptions.

In SpiderMonkey at least, optimizing typed objects does not re-
quire any modification to the existing type monitoring infrastruture.
The reason for this is that the type observation already gathers in-
formation about the prototype of each object it observes. Since each
type object is connected to a distinct prototype (§4), the optimizing
compiler can determine everything it needs about the layout of an
object by looking at its prototype.

7.1.1 Performance measurements
Due to the immaturity and incomplete nature of the current imple-
mentation, we have not performed extensive benchmarking (we are
focusing our efforts on bringing the API up to date first). How-
ever, we have created some simple micro-benchmarks to evaluate
the effectiveness of the type monitoring infrastructure. Results can
be found in Figure 10. The sources to the benchmarks are included
in the appendix, as they provide interesting examples of how code
that uses normal JavaScript objects can be converted to use typed
objects.

All of these benchmarks are small microbenchmarks with a
central loop that reads and writes from some particular kind of data
structure. We tuned the number of iterations so that the typed object
variation would complete in approximately one second. This was
compared against an equivalent benchmark that translated the typed
object data structure into naive JavaScript equivalents (for example,
an array becomes a JavaScript array, a struct becomes a JavaScript
object, and scalar values become JavaScript numbers). Since we
were controlling the number of iterations, the precise timings are
not significant, but the ratio of the two values gives an idea of the
performance of typed objects relative to normal JavaScript code.

These measurements were taken on a Intel i7-3520M CPU run-
ning at 2.90 GHz using an optimized build of the SpiderMonkey
trunk as of the time of this writing. Up to the minute measurements
for these benchmarks are also available on the SpiderMonkey per-
formance monitoring web site Are we fast yet? [1], under the “as-
sorted” section.

The first microbenchmark, “array of scalars”, consists of a loop
reading and writing bytes from and to an array. In this case, the
typed objects code outperforms the standard JavaScript arrays,
likely because arrays occupy less memory (1 byte per element vs
8 bytes for a standard JS array) and hence there are fewer cache
misses.

The second microbenchmark, “struct fields”, creates a struct
with two fixed-length arrays as fields and repeatedly reads and
writes those fields. In this case, the amount of data is fixed and
hence cache effects are not an issue. The standard JavaScript code
paths outperform typed objects, indicating an area where more
work is needed in our implementation.

The final microbenchmark, “array of structs” creates a 1024x768
image of Color structs. In this version, the typed objects outper-
forms the standard JavaScript one. We believe this is for several
reasons: the color fields are smaller and laid out inline in the typed
objects version, which is more cache friendly; furthermore, reading
and writing those fields doesn’t require any pointer chasing, unlike
the standard JS version.

7.2 Pure JavaScript implementation
The API has also been implemented in pure JavaScript using typed
arrays. The source code for this implementation can be downloaded
from GitHub at the following URL:

https://github.com/dslomov-chromium/structs.js

Naturally this implementation does not provide good performance,
but it is useful to get a feeling for how the API works.

7.3 Experience using the API
Helping to validate the design, the Firefox implementation has
been used to develop algorithms for image manipulation and other
computationally intensive tasks. These algorithms also make use of
further APIs for parallel computation which build on typed objects
and which are outside the focus of this paper. Some examples can
be found at the following URL:

http://intelglobal13.github.io/ParallelJS-CV/

8. Related work
The most closely related work in JavaScript is the existing typed
array APIs, which are described in detail in Section 2.

There are a large number of foreign function interface APIs [2,
4–6] that work in a similar way to the typed objects API. Python’s
ctypes API [2] is a representative example (and one which was par-
ticularly influential on the early design of typed objects). In the
ctypes API, as with typed objects, users create objects that describe
types in the C language. These structures can be instantiated and
passed to C functions. The focus on FFI integration however leads
to a rather different end product from our own work. For exam-
ple, ctypes is limited to scalar data, and its type system includes
notions (like union) that are rather specific to C. It has also not
been designed with high performance or JIT integration in mind.
(Mozilla in fact has a port of Python’s ctypes API [5] used for in-
ternal JavaScript, which will likely be reimplementing using typed
objects in the future.)

The Python data model includes a notion of slots [8] that can
be used to control memory usage: when a class is defined, the user
may specify a fixed set of slots. Instances of that class are then
pre-instantiated with precisely that set of fields, and they cannot be
extended with additional fields later. This is useful when there will
be a large number of instances of the class. In comparison to the
typed objects API, the slots mechanism is more limited, because
it does not permit the types of each slot to be declared. Types can
allow for significantly higher memory savings in some cases. The
slot model also does not allow for “inline” allocation of structs and
objects, which means that it would not help in situations like the
“array of structs” benchmark from Figure 7.

Advanced VMs can automatically perform object inlining [10,
15] or object combining [14], in which object hierarchies are col-
lapsed in order to avoid extra allocations and pointer indirections.
Doing this sort of optimization automatically is convenient in some
cases, but also less reliable than (and significantly more compli-
cated for the implementor than) having user-supplied type annota-
tions.

The structural notion of equality that we use for typed objects
makes them a kind of fat pointer, as seen in the language Cy-
clone [12]. Fat pointers in Cyclone are a safe kind of pointer which
carries the bounds of the array it points into along with it, so that
dereferences can be bounds checked. In our case, the fat pointers
carry not only the bounds of the memory it points at but the type
as well, which is appropriate for a dynamically typed language like
JavaScript.

9. Conclusion
We have presented a JavaScript API for defining typed objects.
Typed objects support precise type layouts similar to those found
in C or other statically typed languages. Typed objects have been
designed for performance, with a focus on enabling strong alias
analysis and other optimization properties.

Typed Objects in JavaScript — DRAFT 8 2014/4/1



A. Benchmark Sources
This appendix contains the sources to the three microbenchmarks.
In each case, there are two distinct “preambles” that initialize
either a typed object data structure or else an equivalent standard
JavaScript data structure. The inner loop then follows and is the
same for both versions. Timings include both the initialization and
the inner loop. We tuned the NUM_ITERS variable manually to
achieve running times of approximately one second for the typed
objects version.

A.1 Array of scalars

// In the typed objects version:
var array_in = uint8.array(NUM_ITERS);
var array_out = uint8.array(NUM_ITERS);

// In the standard version:
var array_in = [];
var array_out = [];

// Common to both versions:
for(var i = 0; i < NUM_ITERS; i++)
array_in[i] = 1;

var sum = 0;
for(var k = 0; k < 15; k++)
for(i = 0; i < NUM_ITERS; i++)
array_out[i] = bdArray_in[i];

A.2 Struct fields

// In the typed objects version:
var ThreeVector = float64.arrayType(3);
var Result = new StructType({pos: ThreeVector ,

nor: ThreeVector});
var p = new Result();

// In the standard version:
var p = { pos: [0, 0, 0], nor: [0, 0, 0] };

// Common to both versions:
var v = [1, 2, 3];
for (var i = 0; i < NUM_ITERS; i++) {
v[0] = i+0.5;
v[1] = i+1.5;
v[2] = i+2.5;
out.pos[0] = v0[0];
out.pos[1] = v0[1];
out.pos[2] = v0[2];
out.nor[0] += v0[0];
out.nor[1] += v0[1];
out.nor[2] += v0[2];

}

A.3 Array of structs

// In the typed objects version:
var {StructType ,uint8} = TypedObject;
var Color = new StructType({r:uint8, g:uint8,

b:uint8, a:uint8});
var Image = Color.array(1024, 768);
var image = new Image();

// In the standard version:
var image = [];
for (var x = 0; x < WIDTH; x++) {
image[x] = [];
for (var y = 0; y < HEIGHT; y++) {
image[x][y] = {r:0, g:0, b:0, a:0};

}
}

// Common to both versions:

for (var i = 0; i < NUM_ITERS; i++) {
for (var b = 0; b < 256; b += 2) {
for (var x = 0; x < width; x++) {
for (var y = 0; y < height; y++) {
image[x][y].r = b;
image[x][y].g = b;
image[x][y].a = b;

}
}

}
}

References
[1] Are we fast yet? http://arewefastyet.com.
[2] ctypes—A foreign function interface for Python.
http://docs.python.org/2/library/ctypes.html.

[3] Draft Specification for ES.next (Ecma-262 Edition 6).
http://wiki.ecmascript.org/.

[4] Java Native Access. https://github.com/twall/jna.
[5] JSctypes. https://wiki.mozilla.org/JSctypes.
[6] LibFFI. https://sourceware.org/libffi/.
[7] Mandreel. http://www.mandreel.org.
[8] The Python Data Model, Section 3.4.2.4.
http://docs.python.org/2/reference/datamodel.html.

[9] Alon Zakai et al. Emscripten. http://www.emscripten.org.
[10] J. Dolby. Automatic Inline Allocation of Objects. In Programming

Language Design and Implementation, PLDI ’97, pages 7–17, New
York, NY, USA, 1997. ACM. ISBN 0-89791-907-6. .

[11] B. Hackett and S.-y. Guo. Fast and Precise Hybrid Type Inference for
JavaScript. In Programming Language Design and Implementation,
PLDI ’12, pages 239–250, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1205-9. .

[12] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A Safe Dialect of C. In USENIX Annual Technical
Conference, ATEC ’02, pages 275–288, Berkeley, CA, USA, 2002.
USENIX Association. ISBN 1-880446-00-6.

[13] The Khronos Group. Typed Array Specification v1.0.
https://www.khronos.org/registry/typedarray/specs/1.0/,
February 2011.

[14] Veldema, Ronald and Jacobs, Ceriel J. H. and Hofman, Rutger F. H.
and Bal, Henri E. Object Combining: A New Aggressive Optimization
for Object Intensive Programs: Research Articles. Concurr. Comput. :
Pract. Exper., 17(5-6):439–464, Apr. 2005. ISSN 1532-0626. .

[15] C. Wimmer and H. Mössenböck. Automatic Feedback-directed Object
Inlining in the Java Hotspot&#8482; Virtual Machine. In Virtual
Execution Environments, VEE ’07, pages 12–21, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-630-1. .

Typed Objects in JavaScript — DRAFT 9 2014/4/1


